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* FOX(Forkhead box )& H; s BEREF I 73—, (RAXTEILF
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FOXP2: Neuroimaging

+ Brains of individuals with FOXP2 mutations have reduced grey matter in
the frontal gyrus which includes Broca's area

+ Functional abnormalities in Broca’s area during language tasks
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(Nature Neuroscience (2003))
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W.Enard et al. S. Paabo (2009)A humanized version of Foxp2 == +,Cell
137,961-971
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E. Balaban et al.(1988) Science 241 1339-1342

Fig. 4. Feulgen- mnedsccnonﬂmxghﬂmmbmlhcmmphmofaquaﬂ(Q)mmduck(C)chm
(experiment C in Fig. 1) at P7. (A) Host and donor cells are well the level of the ventricular
chl;xetrcll:;lmm(t\;)Am?‘Fofquad(T)mdchmk(V)ocﬂs b:lymoonmctmﬁ:tlu.sdnnccll

cell movements during development; this produces chimeric brain
regions. B)Elﬂatgcmmtofthcmg:onmdjmmdmdlemm P .
and chick neurons and gfial cells.
(A), 22 um; bar in (B), 11 pm.

showing a mixed region containing quail
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Fig. 5. Testosterone-induced juvenile crowing patterns from chickens, quails, and quail donor—hicken
host brain chimeras. All crows shown were recorded between 4 and 7 days after hatching. Each box
shows an amplitude-time (bottom) and frequency-time (sound spectrographic, top) representation of
one crowing vocalization. Frequency and time markers are as indicated at the top right. Transplant
operations are shown schematically at the lower left: 1, transplant of the dorsal neural tube primordium,
giving rise to the dorsal thalamus; 2, transplant of the whole prosencephalic neural tube, giving rise to
the entire telencephalon, diencephalon, and eyes; 3, transplant of the whole prosencephalic and
mesencephalic neural tube, giving rise to the entire telencephalon, diencephalon, and mesencephalon
including the eyes; or 4, transplant of the whole neural tube between the first somite and the caudal part
of the prosencephalon, giving rise to the entire rhombencephalon, cerebellum, mesencephalon,
diencephalon. and caudal portions of the telencephalon. Numbers in the upper left corner of cach
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8. BIEFE A . Knock DownlZkLAEIaD 2 E
$ﬂ§'&(*¢"f" = %E%EE&%) EMMFICESETAHELES M), 2D

ﬂxd)ﬁﬂn
FoxP2 decreases at a specific region of chick midbrain after hatchingD AR E =&}

N

FFILES Y
PRt A TD LB
FoxP2F IR 9> 1h

Hue

L

=" hl}ﬂi?‘\o) = )X T FoxP2
B FEA FAIFKCEDHETE S



o.FoxP2ERBIX=JFJNRMEE PO
A DR TREADT S

FOXPZ Protein decreases at a specific region in the chick midbrain after hatching
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Fig. 1. Validation of anti-FoxP2 primary antibody Ab1307 for chick FoxP2 protein. A, Western blotting with Ab1307 on COS-1 cells expressing chick FoxP2 tagged
with EGFP. B, C, Immunofluorescence cytochemistry. COS-1 cells expressing EGFP-tagged chick FoxP2 were fixed with 4 %PFA in 0.1 M PB, incubated with (B) or
without (C) Ab1307, and reacted with Alexa Fluor 546-conjugated antibody. Images were acquired by confocal laser scanning microscopy. Scale bar = 20 pm.
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Fig. 2. FoxP2 protein levels in the midbrain of pre- and post-hatched chicks. A,
Western blotting without the anti-FoxP2 primary antibody Ab1307 of the whole
midbrain extract from a post-hatched chick. Note that FoxP2 protein was not
detected. anti-GAPDH antibody was used as a loading control. B, Western
blotting of the whole midbrain extracts from three chicks in each group. FoxP2
protein was detected using Ab1307. anti-GAPDH antibody was used as a
loading control. C, Band densitometry for FoxP2 normalized to corresponding
GAPDH intensity in B. Values are means + SEM. n = 3 for each group, *p <
0.05 (analyzed by unpaired t-test).
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Tissue preparation: The sperm eggs of Rhode island Red were incubated at 38 °C and 70% of humidity for
18/19 and 22 days. A chick was anesthetized with Somnopentyl , perfused and fixed with 4 % PFA/0.1M PB.
Cryostat sagittal brain sections (50 ym thikness ) were rinsed in PBS, incubated in blocking buffer (BB), reacted
with ac1307 anti-human FOXP2 antibody.IHC(ABC-DAB ):The brain sections were incubated in 0.3%%
hydrogen peroxide -0.3%TX, rinsed in PBS , incubated in BB, reacted with ac 1307Foxp2 antibody. then
washed in PBS, incubated in biotinylated —anti goat antibody, washed in PBS, reacted with streptavidin-HRP,
rinsed in Tris buffer, reacted with 0.05% DAB-0.001/ 0.05% hydrogen peroxide.
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Fig. 3. Immunohistochemistry of FoxP2-ir cells in the
B c midbrain of pre- and post-hatched chicks. A-C, Pho-
tomicrographs of a 22-d chick midbrain by FoxP2
immunostaining with Ab1307 (A), without Ab1307
(B), and with a mixture of Ab1307 and FOXP2
blocking peptide (C). D-F, Photomicrographs of a pre-
hatched chick midbrain by FoxP2 immunostaining
with Ab1307 (D); E, magnified image of (D) in the
SGFS and SGC; F, magnified image of (D) in the ToS
region. G-I, Photomicrographs of the midbrain in a
post-hatched chick by FoxP2 immunostaining with
e Ab1307 (G); H, magnified image of (G) in the SGFS
% and SGC; I, magnified image of (G) in the ToS region.
* Scale bar = 200 pm. SAC: stratum album centrale of
. the optic tectum; SGC: stratum gris centrale of the
S nntan optic tectum; SGFS: stratum gris fibrosome of the optic
== tectum; ToS; torus semicircularis.
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Fig. 4. Numbers of Fox P2-ir cells in the ROI at each subregion in pre- and post-
hatched chicks. Values are mean + SEM. n = 5 for each group, *p < 0.05
(analyzed by unpaired t-test). See Fig. 3 for details.

In the SGFS, including the most lateral layer, the numbers of FoxP2-ir
cells significantly decreased after hatching (p < 0.05) compared with
the numbers before hatching. Although the number of FoxP2-ir cells in
other regions of post-hatched chicks tended to be lower than those of
pre-hatched chicks, there were no significant differences in the numbers
of FoxP2-ir cell at the SGC, SAC, and ToS between pre- and post-hatched
chicks (Fig. 4).



16. Progress report

Pj1; =D RYMERRIERANIZ, D X5QFoxP2#E A #HA#p-EGFDNAZERE  FLPEATEAL
THIKNTODFoXxP2EEFRIREZRAXR, MIEBROEIQRETFEDOEFZREMATET S,

Pj2; = MY FHAREPANIZ. =7 k') FoxP2 siRNA/shDNAHIAAH RS2 —%PE;LZTE AL THiK
TOFoxPLUEGFRIAZH . BEEOEIQRESFLOBREMET S,

(Pj3; —ZJ R FEAREFEXIZ, ™ XS5 QFoxP2#H A 3A A AAV X =" k) FoxP2shDNAHHE A A EGF-
AAVE DA L AR F AL EZTEAL THIKN TOFoxP2EIEFHRIZHAR . Bt oEIaEES
EDEREMET S, )

R.Egawa et al(2013). Optogenetic Probing and Manipulation of the Calyx-Type Presynaptic
Terminal in the Embryonic Chick Ciliary Ganglion, PLoS ONE 8(3): e59179
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Nature vql.626, 2024,485-486

a Leonardetal b Khannaetal.
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Figure 1 | Recording the activity of neurons involved in speech processing. a, Leonard et al.1 used an
intracranial probe called Neuropixels to measure the activity of single neurons in the superior temporal gyrus,
a region of the brain’s auditory cortex that is involved in processing speech sounds, while participants listened
to speech. b, Khanna et al.2 used the same approach to measure neuronal activity in the prefrontal cortex, a
brain region that is involved in word planning, while participants were speaking or listening to speech. Both
teams found that single neurons are tuned to particular features of speech, including the sounds or the
positions of phonemes (the smallest units of speech) in a word.
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a—d, Diagram of the Neuropixels 1.0-S probe with a
headstage and the ground and reference pads indicated
(outlined in cyan, left) and preparation in a sterile field,
with the probe outlined in cyan (a), set up before electrode
insertion, b), handling and connecting to wires and visual
inspection (c) and testing in saline (d). e, Electrode
attached to three sterile stylets on the ROSA robot for
insertion. f, Electrode inserted into the dIPFC through a
burr hole using the ROSA robot. g, Electrode inserted into
the lateral temporal cortex. h, 3D model of the DBS burr
hole location with a model of the Neuropixels probe. i,
Location zoomed-in view on the 3D view with the gray wire
the reference and the black wire the ground. j, With the
putative Neuropixels location overlaid on the preoperative
MRI (top) during one DBS case, which was mapped based
on the implanted location of the DBS electrode (and the
burr hole) and the angles of the Neuropixels probe based
on the dimensions of the holder and burr hole as well as
the closest visible cortical gyrus. k, Putative location and
likely depth of the electrode in an open craniotomy case for
epilepsy surgery in the lateral temporal cortex (left two
columns), with the depth informed by the
electrophysiology, where the LFP shows a clear difference
between superficial electrodes and deeper contacts, as
highlighted here in a color scale indicating voltage. |, m,
Example recording from Pt. 01 and Pt. 02 in the dIPFC
across multiple channels, with APs shown extending across
multiple channels. The light green filled-in box in the
background traces are then expanded in the green-outlined
voltage traces in the foreground. In a, e, j and k: cyan
rectangles are highlighting the location of the Neuropixels
probe.
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23. Brain map of human and bird
related to vocalization
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