放射線リスクと喫煙リスクの相互作用の分析

Analysis of interaction between radiation risk and smoking risk

永井宏幸 Nagai.KokoNPO法人 市民科学研究室2023年11月

利益相反なし

研究の背景と目的

喫煙は放射線リスクの分析に大きな影響を与える. 喫煙を考慮して ERR を定義するモデルがある. (e.g. Grant et al., 2017)

- 加法 ERR モデル $RR = 1 + ERR_{smok} + ERR_{rad}$
- 乗法 ERR モデル $RR = (1 + ERR_{smok})(1 + ERR_{rad})$
- 1. 乗法 ERR モデルの ERR_{rad} は正しい放射線リスクを与えない.
- 2. モデルのどちらがよい近似であるかデータ解析で検討する.

真の放射線 ERR*

線形 ERR で考える.

$$ERR_s = \beta_s s$$

$$ERR_r = \beta_r r$$

乗法 ERR モデル

$$RR(r,s) = (1 + \beta_{rad}r)(1 + \beta_{smok}s)$$

放射線リスクの真の ERR は

$$ERR_{rad}^* \equiv \frac{RR(r,s)}{\partial r}$$
$$= \beta_{rad}(1 + \beta_{smok}s)$$

一般ERRモデル

相互作用項をパラメータにして回帰分析で最適値を求める 一般 ERR モデル

$$RR = 1 + \beta_{rad}r + \beta_{smok}s + \beta_{cross}rs$$

$$\beta_{cross} = \begin{cases}
0 & \text{if } m法 ERR モデル \\
\beta_{rad}\beta_{smok} & \text{if } 乗法 ERR モデル
\end{cases}$$

広島・長崎原爆被爆者

固形がん 罹患率 (Grant et al.,2017)

肺がん 罹患率 (Cahoon et al.,2017)

男性喫煙者

総喫煙量s:mkcat,smkycat から計算.

(smkcat,samkycat=1,2 除外. 下表参照)

 $y_0(k)$: 到達年齢・被曝時年齢・暦年 (以上,指数関数)・

市 (ダミー).

smkcat	1日当たりの喫煙本数 (カテゴリー)
	1: 不明; 2: 0; 3: 1-7.4; 4: 7.5-12.4; 5: 12.5-17.4; 6: 17.5-22.4; 7: 22.5-27.4; 8: 27.5+
smkyrcat	喫煙年数 (カテゴリー)
	1: 不明; 2: 0; 3: >0-5; 4: 5-10; 5: 10-20; 6: 20-30; 7: 30+

広島・長崎原爆被爆者

$$y = y_0(k) \exp(\beta_{rad}r + \beta_{smok}s + \beta_{cross}rs)$$

 $\simeq y_0(k)(1 + \beta_{rad}r + \beta_{smok}s + \beta_{cross}rs)$

r:累積線量(単位 Gy, 10 年ラグ)

s:総喫煙量 (Packyear)

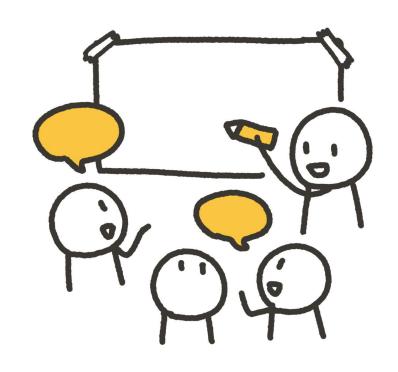
 $y_0(k)$:ベースライン

結果

LSS cancer incidence

	solid		lung	
	Estimate	Std. Error	Estimate	Std. Error
dose	0.70	0.18	2.05	1.44
ру	0.02	0.00	0.15	0.06
py:dose	-0.01	0.01	-0.03	0.05

核施設労働者 がん*死亡


JNW mortality

ca	n	C	e	r	*
		200			

20	Estimate	Std. Error
dose	7.43	3.82
ру	0.03	0.01
py:dose	-0.16	0.09

まとめ

- 1. 加法 ERR モデルとコンシステント.
- 2. 乗法 ERR モデルは不適当.
- どうしても乗法 ERR モデルを使いたいのなら 真の放射線リスクを示すこと.

以上, 突っ込みを期待します

核施設労働者

白血病を除くがん 死亡率 (Kudo et al.,2018)

男性喫煙者

総喫煙量s:計算されている.

 $y_0(k)$: 到達年齢・暦年 (以上,指数)・居住地 (ダミー).

平均総喫煙量 1日 (Packyear)

平 均 総 喫 煙 量 1 日当たりの喫煙本数×喫煙年数/20

LSS がん罹患率

固形がん Grant et al.,2017

肺がん Cahoon et al.,2017

		solid			lung	
		Estimate	Std. Error		Estimate	Std. Error
add	dose	0.57	0.09	dose	1.37	0.72
	ру	0.02	0.00	ру	0.14	0.05
mul	dose	0.40	0.06	dose	0.26	0.12
	ру	0.02	0.00	ру	0.12	0.04
gen	dose	0.70	0.18	dose	2.05	1.44
	ру	0.02	0.00	ру	0.15	0.06
	py:dose	-0.01	0.01	py:dose	-0.03	0.05

JNW がん*死亡率

がん* Kudo et al.,2018

		Estimate	Std. Error
add	dose	1.27	1.43
	ру	0.02	0.01
mul	dose	0.31	0.72
	ру	0.02	0.01
gen	dose	7.43	3.82
	ру	0.03	0.01
	py:dose	-0.16	0.09

σが大きい. 直線近似が悪いことによると考えられる. 2次項をいれると分析は複雑になる.